2-INF-150: Strojové učenie / Machine Learning
Zima 2025 / Fall 2025
Handouts


Contact | Basic information | Homeworks | Exams | Handouts | Previous semesters


This page shows preliminary schedule of classes and servers as a repository of materials relevant to class. The schedule will be update regularly after lectures.
 
Recommended literature
In the schedule, we list the chapters most relevant to the material covered in class. Presentation of the material in lectures usually differs from the books. The book chapters should serve mainly as an additional materials for self study.
 

 
Additional materials

 

Týždeň 22.09.2025-26.09.2025
Administration. Introduction.
Supervised learning / regression. Linear regression and it's variants.
Literatúra: GBC:2.1-2.4 or B:C; GBC:5.1 or B:3.1 or HTF:3.1-3.2
Slajdy:Poznámky a ďalšie materiály:
video intro:linka ]
video regression:linka ]
slides 1:PDF, 308 Kb ]
slides 2:PDF, 342 Kb ]
stanford (chapters 1, 2, 4):linka ]

Týždeň 29.09.2025-03.10.2025
Theory of learning, overfit, underfit, bias variance.
Tutorials 1: numpy
Literatúra: GBC:4.3,5.9; B:3.1; Tutorials 1: collabora/jupyter notebooks, numpy
Slajdy:Poznámky a ďalšie materiály:
Tutorials 1: numpy:linka ]
Learning theory notes:PDF, 362 Kb ]
video lecture:linka ]
stanford (chapter 4):linka ]
stanford (chapter 1):linka ]

Týždeň 06.10.2025-10.10.2025
Theory of learning cont. Regularization.
Tutorials 2: regression
Slajdy:Poznámky a ďalšie materiály:
lecture:linka ]
Tutorials 2: Regression:linka ]
stanford (chapter 1):linka ]

Týždeň 13.10.2025-17.10.2025
Classification. Logistic regression, softmax (maximum entropy) classifier. Neural networks.
Slajdy:Poznámky a ďalšie materiály:
lecture:linka ]
stanford (chapter 3, 5 and 9.3):linka ]

Týždeň 20.10.2025-24.10.2025

Support vector machines. Kernel trick. How to handle inseparable data.
Slajdy:Poznámky a ďalšie materiály:
lecture:linka ]
lecture2:linka ]
lecture3:linka ]
SVM Stanford:linka ]

Týždeň 27.10.2025-31.10.2025
Decision trees.
Tutorials 3: neural networks
Slajdy:Poznámky a ďalšie materiály:
Tutorials 3: neural networks:linka ]
lecture:linka ]
Decision Trees:linka ]
Decision Trees 2:linka ]
My notes on decision trees:PDF, 193 Kb ]

Týždeň 03.11.2025-07.11.2025
Bagging, random forests. Boosting, gradient boosting.
Theory of learning 2 (PAC learning).
Slajdy:Poznámky a ďalšie materiály:
gradient boosting:linka ]
My notes on gradient boosting:PDF, 230 Kb ]

Týždeň 10.11.2025-14.11.2025
Theory of learning 2 - cont. (VC dimension).
Tutorials: Decision trees and SVM
Slajdy:Poznámky a ďalšie materiály:
lecture:linka ]
PAC learning rectangle game:linka ]
PAC learing, VC dimension (until 50 minute):linka ]
Tutorials 4: trees and SVMs:linka ]

Týždeň 17.11.2025-21.11.2025
Clustering. PCA

Týždeň 24.11.2025-28.11.2025
How to build a language model?
No lecture, faculty conference.

Týždeň 08.12.2025-12.12.2025
Reinforcement learning.
Recommendation systems.

Týždeň 15.12.2025-19.12.2025
Vision models + transfer learning.
Tutorials: PCA.

Týždeň 15.12.2025-19.12.2025
Practical tips for machine learning.
Tutorials: transfer learning, large models.


Maintained by 2-INF-150 personnel