Below is the list of all references used in our database. After clicking on the short reference name or the modification count, you will get a list of modifications imported from that particular source.

Short name Full reference Modification count
Post-translational modifications:
Albuquerque et al. (2008) Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396.
https://doi.org/10.1074/mcp.M700468-MCP200
Phosphoproteome of cells grown under standard conditions (YPD media) compared to cells exposed to DNA-damaging agent (0.05% methyl methanesulfonate)
1649
Alepuz et al. (2003) Alepuz, P.M., de Nadal, E., Zapater, M., Ammerer, G., Posas, F. (2003). Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22: 2433-2442.
https://doi.org/10.1093/emboj/cdg243
Osmostress regulated trasncrition regulated by protein kinase Hog1
1
Alexandru et al. (2001) Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M.A., Nasmyth, K. (2001). Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105: 459-472.
https://doi.org/10.1016/s0092-8674(01)00362-2
Phoshorylation of the cohesin subunit Mdc1/Scc1 by Polo/Cdc5 protein kinase
10
Anders et al. (2020) Anders, A.,  Ghosh, B.,  Glatter, T.,  Sourjik, V. (2020). Design of a MAPK signalling cascade balances energetic cost versus accuracy of information transmission. Nat Commun 11: 3494.
https://doi.org/10.1038/s41467-020-17276-4
Analysis of phosphorylatio-dephosphorylation cyclin of MAP kinases
1
Annan et al. (2008) Annan, R.B., Wu, C., Waller, D.D., Whiteway, M., Thomas, D.Y. (2008). Rho5p is involved in mediating the osmotic stress response in Saccharomyces cerevisiae, and its activity is regulated via Msi1p and Npr1p by phosphorylation and ubiquitination. Eukaryot Cell 7: 1441-1449.
https://doi.org/10.1128/EC.00120-08
Osmotic stress-induced phosphorylation and ubiquitination of the small GTPase Rho5
2
Anton et al. (2013) Anton, F., Dittmar, G., Langer, T., Escobar-Henriques, M. (2013). Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol Cell 49: 487-498.
https://doi.org/10.1016/j.molcel.2012.12.003
Ubiquitylation of the mitofusin Fzo1
2
Aoki et al. (2011) Aoki, Y., Kanki, T., Hirota, Y., Kurihara, Y., Saigusa, T., Uchiumi, T., Kang, D. (2011). Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 22: 3206-3217.
https://doi.org/10.1091/mbc.E11-02-0145
Mapping phosphorylated sites on Atg32 protein
2
Back et al. (2019) Back, S., Gorman, A.W., Vogel, C., Silva, G.M. (2019). Site-specific K63 ubiquitinomics provides insights into translation regulation under stress. Journal of Proteome Research 18(1): 309-318.
https://doi.org/10.1021/acs.jproteome.8b00623
Ubiquitylated sites on proteins in cells exposed to oxidative stress
379
Bai et al. (2017) Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875.
https://doi.org/10.1016/j.funbio.2017.06.004
A database of phosphosites on fungal proteins [not curated since 2017]
8186
Baro et al. (2018) Baro, B., Játiva, S., Calabria, I., Vinaixa, J., Bech-Serra, J.J., de LaTorre, C., Rodrigues, J., Hernáez, M.L., Gil, C., Barceló-Batllori, S., Larsen, M.R., Queralt, E. (2018). SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast. Gigascience 7: giy047.
https://doi.org/10.1093/gigascience/giy047
Changes in phosphoproteome in Cdc55 deficient cells reveal substrates of PP2A important for mitotic exit
8
Barz et al. (2020) Barz, S., Kriegenburg, F., Henning, A., Bhattacharya, A., Mancilla, H., Sánchez-Martín, P., Kraft, C. (2020). Atg1 kinase regulates autophagosome-vacuole fusion by controlling SNARE bundling. EMBO Rep 21: e51869.
https://doi.org/10.15252/embr.202051869
Regulation of Ykt6 activity on autophagosomes via phosphorylation by the Atg1 kinase
2
Belanger et al. (2005) Belanger, K.D., Gupta, A., MacDonald, K.M., Ott, C.M., Hodge, C.A., Cole, C.M., Davis, L.I. (2005). Nuclear pore complex function in Saccharomyces cerevisiae is influenced by glycosylation of the transmembrane nucleoporin Pom152p. Genetics 171: 935-947.
https://doi.org/10.1534/genetics.104.036319
Glycosylation of nuclear pore complex proteins
1
Benzi et al. (2020) Benzi, G., Camasses, A., Atsunori, Y., Katou, Y., Shirahige, K., Piatti, S. (2020). A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint. EMBO Rep 21: e50257.
https://doi.org/10.15252/embr.202050257
Hyperphosphorylation of AMP-activated protein kinase Snf1 on T210 under low glucose conditions
1
Bhagwat et al. (2021) Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V,, Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., Johnson, J.R., Krogan, N.J., Hunter, N. (2021). SUMO is a pervasive regulator of meiosis. Elife 10:e57720.
https://doi.org/10.7554/eLife.57720
SUMO-modified meiotic proteome, sites co-midified by SUMO and phosphorylatio
555
Boeckstaens et al. (2015) Boeckstaens, M., Merhi, A., Llinares, E., Van Vooren, P., Springael, J.Y., Wintjens, R., Marini, A.M. (2015). Identification of a novel regulatory mechanism of nutrient transport controlled by TORC1-Npr1-Amu1/Par32. PLoS Genet 11: e1005382.
https://doi.org/10.1371/journal.pgen.1005382
Npr1-mediated phosphorylation of Par32 induced by exposure to rapamycin
4
Bontron et al. (2013) Bontron, S., Jaquenoud, M., Vaga, S., Talarek, N., Bodenmiller, B., Aebersold, R., De Virgilio, C. (2013). Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A. Cell Rep 3: 16-22.
https://doi.org/10.1016/j.celrep.2012.11.025
Targets of protein phosphatase PP2A Cdc55
2
Brachmann et al. (2020) Brachmann, C., Kaduhr, L., Jüdes, A., Ravichandran, K.E., West, J.D., Glatt, S., Schaffrath, R. (2020). Redox requirements for ubiquitin-like urmylation of Ahp1, a 2-Cys peroxiredoxin from yeast. Redox Biol 30: 101438.
https://doi.org/10.1016/j.redox.2020.101438
Urmylation of the peroxiredoxin Ahp1
1
Breitkreutz et al. (2010) Breitkreutz, A.,  Choi, H.,  Sharom, J.R.,  Boucher, L.,  Neduva, V.,  Larsen, B.,  Lin, Z.Y.,  Breitkreutz, B.J.,  Stark, C.,  Liu, G., Ahn, J.,  Dewar-Darch, D.,  Reguly, T.,  Tang, X.,  Almeida, R.,  Qin, Z.S.,  Pawson, T.,  Gingras, A.C.,  Nesvizhskii, A.I.,  Tyers, M. (2010). A global protein kinase and phosphatase interaction network in yeast. Science 328: 1043-1046.
https://doi.org/10.1126/science.1176495
Proteomic analysis of complexes containing protein kinases and phosphatases
68
Brito et al. (2019) Brito, A.S., Soto, Diaz, S., Van Vooren, P., Godard, P., Marini, A.M., Boeckstaens, M. (2019). Pib2-dependent feedback control of the TORC1 signaling network by the Npr1 kinase. iScience 20: 415-433.
https://doi.org/10.1016/j.isci.2019.09.025
Pib2-dependent inhibition of TORC1 mediated by protein kinase Npr1
2
Busso et al. (2015) Busso, C., Ferreira-Júnior, J.R., Paulela, J.A., Bleicher, L., Demasi, M., Barros, M.H. (2015). Coq7p relevant residues for protein activity and stability. Biochimie 119: 92-102.
https://doi.org/10.1016/j.biochi.2015.10.016
Identification of phosphorylated residues on the Cat5/Coq7 protein
1
Caesar et al. (2006) Caesar, R., Warringer, J., Blomberg, A. (2006). Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. Eukaryot Cell 5: 368-378.
https://doi.org/10.1128/EC.5.2.368-378.2006
Targets of the N-terminal acetyltransferase
1
Cao et al. (2014) Cao, L.,  Yu, L.,  Guo, Z.,  Shen, A.,  Guo, Y.,  Liang, X. (2014). N-Glycosylation site analysis of proteins from Saccharomyces cerevisiae by using hydrophilic interaction liquid chromatography-based enrichment, parallel deglycosylation, and mass spectrometry. J Proteome Res 13: 1485-1493.
https://doi.org/10.1021/pr401049e
Profiling of N-glycosylated sites on cellular proteins proteins
22
Caslavska-Zempel et al. (2016) Caslavka Zempel, K.E.,  Vashisht, A.A.,  Barshop, W.D.,  Wohlschlegel, J.A.,  Clarke, S.G. (2016). Determining the mitochondrial methyl proteome in Saccharomyces cerevisiae using heavy methyl SILAC. Journal of Proteome Research 15(12): 4436-4451.
https://doi.org/10.1021/acs.jproteome.6b00521
Methylproteome of cell grown under respiratory conditions
17
Chandel et al. (2016) Chandel, A., Das, K.K., Bachhawat, A.K. (2016). Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines. Mol Biol Cell 27: 3913-3925.
https://doi.org/10.1091/mbc.E16-05-0281
Glutathionylated sites on the protein Yvc1p
3
Chang and Huh (2018) Chang, Y., Huh, W.K. (2018). Ksp1-dependent phosphorylation of eIF4G modulates post-transcriptional regulation of specific mRNAs under glucose deprivation conditions. Nucleic Acids Res 46: 3047-3060.
https://doi.org/10.1093/nar/gky097
Phosprylation status of mRNA binding proteins under glucose deprivation
33
Chee and Haase (2010) Chee, M.K., Haase, S.B. (2010). B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. PLoS Genet 6: e1000935.
https://doi.org/10.1371/journal.pgen.1000935
Clb/Cdc28-depemdent phosphorylation of kinesin-5 motors Kip1 and Cin8
4
Chen et al. (2010) Chen, S.H., Albuquerque, C.P., Liang, J., Suhandynata, R.T., Zhou, H. (2010). A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285: 12803-12812.
https://doi.org/10.1074/jbc.M110.106989
Targets of DNA damage response protein kinases Mec1/Tel1, Rad53, and Dun1
21
Chen et al. (2018a) Chen, Y.C.,  Jiang, P.H.,  Chen, H.M.,  Chen, C.H.,  Wang, Y.T.,  Chen, Y.J.,  Yu, C.J.,  Teng, S.C. (2018a). Glucose intake hampers PKA-regulated HSP90 chaperone activity. Elife 7: e39925.
https://doi.org/10.7554/eLife.39925
Phosphoproteome of calorie-restricted cells (0.5% glucoce)
239
Chen et al. (2018b) Chen, X., Yang, X., Shen, Y., Hou, J., Bao, X. (2018b). Screening phosphorylation site mutations in yeast acetyl-CoA carboxylase using malonyl-CoA sensor to improve malonyl-CoA-derived product. Front Microbiol 9: 47.
https://doi.org/10.3389/fmicb.2018.00047
Phosphosites on acetyl-CoA carboxylase Acc1p
13
Chen et al. (2021) Chen, Z., Malia, P.C., Hatakeyama, R., Nicastro, R., Hu, Z., Péli-Gulli, M.P., Gao, J., Nishimura, T., Eskes, E., Stefan, C.J., Winderickx, J., Dengjel, J., De Virgilio, C., Ungermann, C. (2021). TORC1 determines Fab1 lipid kinase function at signaling endosomes and vacuoles. Curr Biol 31: 297-309.e8
https://doi.org/10.1016/j.cub.2020.10.026
Phosphorylation of the lipid kinase Fab1 by TORC1 protein kinase
5
Chernova et al. (2020) Chernova, T.A., Yang, Z., Karpova, T.S., Shanks, J.R., Shcherbik, N., Wilkinson, K.D., Chernoff, Y.O. (2020). Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 21: 5038.
https://doi.org/10.3390/ijms21145038
Ubiquitylation of the gamm subunit of G-protein Ste18
1
Chun et al. (2019) Chun, Y., Joo, Y.J., Suh, H., Batot, G., Hill, C.P., Formosa, T., Buratowski, S. (2019). Selective Kinase Inhibition Shows That Bur1 (Cdk9) Phosphorylates the Rpb1 Linker In Vivo. Mol Cell Biol 39: e00602-18.
https://doi.org/10.1128/MCB.00602-18
The largets subunit of RNA polymerase II (Rpo21/Rpb1) is phosphorylated by protein kinase Sgv1/Bur1.
2
Clotet et al. (2006) Clotet, J., Escoté, X., Adrover, M.A., Yaakov, G., Garí, E., Aldea, M., de Nadal, E., Posas, F. (2006). Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25: 2338-2346.
https://doi.org/10.1038/sj.emboj.7601095
Phosphorylation of protein kinase Hsl1 by Hog1 kinase
1
Couttas et al. (2012) Couttas, T.A., Raftery, M.J., Padula, M.P., Herbert, B.R., Wilkins, M.R. (2012). Methylation of translation-associated proteins in Saccharomyces cerevisiae: Identification of methylated lysines and their methyltransferases. Proteomics 12: 960-972.
https://doi.org/10.1002/pmic.201100570
Methylation of translation-associated proteins
4
Crutchley et al. (2009) Crutchley, J., King, K.M., Keaton, M.A., Szkotnicki, L., Orlando, D.A., Zyla, T.R., Bardes, E.S., Lew, D.J. (2009). Molecular dissection of the checkpoint kinase Hsl1p. Mol Biol Cell 20: 1926-1936.
https://doi.org/10.1091/mbc.e08-08-0848
Phosphorylation of kinase domain of protein kinase Hsl1
1
DeMille et al. (2019) DeMille, D., Pape, J.A., Bikman, B.T., Ghassemian, M., Grose, J.H. (2019). The regulation of Cbf1 by PAS Kinase is a pivotal control point for lipogenesis vs. respiration in Saccharomyces cerevisiae. G3 (Bethesda) 9: 33-46.
https://doi.org/10.1534/g3.118.200663
Phosphorylation of centromere-binding factor 1 (Cbp1) by protein kinase Psk1
1
Deng et al. (2009) Deng, C., Xiong, X., Krutchinsky, A.N. (2009). Unifying fluorescence microscopy and mass spectrometry for studying protein complexes in cells. Mol Cell Proteomics 8: 1413-1423.
https://doi.org/10.1074/mcp.M800397-MCP200
Phosphosites on eisosomal protein complexes purified from cells grown in a complex media and upon cell cycle release
4
Dey et al. (2019) Dey, P., Su, W.M., Mirheydari, M., Han, G.S., Carman, G.M. (2019). Protein kinase C mediates the phosphorylation of the Nem1-Spo7 protein phosphatase complex in yeast. J Biol Chem 294: 15997-16009.
https://doi.org/10.1074/jbc.RA119.010592
Protein kinase C - dependent phosphorylation of the Nem1–Spo7 complex
1
Dohlman et al. (1993) Dohlman, H.G., Goldsmith, P., Spiegel, A.M., Thorner, J. (1993). Pheromone action regulates G-protein alpha-subunit myristoylation in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90: 9688-9692.
https://doi.org/10.1073/pnas.90.20.9688
Myristoylated sites on the alpha subunit of G protein Gpa1
1
Dokládal et al. (2021) Dokládal, L.,  Stumpe, M.,  Hu, Z.,  Jaquenoud, M.,  Dengjel, J.,  De Virgilio, C. (2021). Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37: 110149.
https://doi.org/10.1016/j.celrep.2021.110149
Rapamycin-sensitive phosphoproteome
85
Dubots et al. (2014) Dubots, E., Cottier, S., Péli-Gulli, M.P., Jaquenoud, M., Bontron, S., Schneiter, R., De Virgilio, C. (2014). TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex. PLoS One 9: e104194.
https://doi.org/10.1371/journal.pone.0104194
TORC1 - dependent phosphorylation of the Nem1–Spo7 complex
2
Eraso et al. (2006) Eraso, P., Mazón, M.J., Portillo, F. (2006). Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758: 164-170.
https://doi.org/10.1016/j.bbamem.2006.01.010
Glucose-induced phosphorylation of plasma membrane H+-ATPase (Pma1)
1
Fang et al. (2014) Fang, N.N.,  Chan, G.T.,  Zhu, M.,  Comyn, S.A.,  Persaud, A.,  Deshaies, R.J.,  Rotin, D.,  Gsponer, J.,  Mayor, T. (2014). Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nature Cell Biology 16(12): 1227-1237.
https://doi.org/10.1038/ncb3054
Heat stress induced PTMs (ubiqitylation, carbamoylation, Met oxidation)
106
Feng et al. (2016) Feng, Y., Backues, S.K., Baba, M., Heo, J.M., Harper, J.W., Klionsky, D.J. (2016). Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy 12: 648-658.
https://doi.org/10.1080/15548627.2016.1157237
Phosphorylation sites on Atg9 protein
1
Fernández-García (2012) Fernández-García, P., Peláez, R., Herrero, P., Moreno, F. (2012). Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling. J Biol Chem 287: 42151-42164.
https://doi.org/10.1074/jbc.M112.401679
Nucleo-cytoplasmic shuffling of hexokinase 2 (Hxk2) is regulated by phosphorylation
1
Ficcaro et al. (2002) Ficarro, S.B.,  McCleland, M.L.,  Stukenberg, P.T.,  Burke, D.J.,  Ross, M.M.,  Shabanowitz, J.,  Hunt, D.F.,  White, F.M. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20: 301-305.
https://doi.org/10.1038/nbt0302-301
Phosphoproteome of cells grown in a complex (YPD) medium
111
Folz et al. (2019) Folz, H., Niño, C.A., Taranum, S., Caesar, S., Latta, L., Waharte, F., Salamero, J., Schlenstedt, G., Dargemont, C. (2019). SUMOylation of the nuclear pore complex basket is involved in sensing cellular stresses. J Cell Sci 132: jcs224279.
https://doi.org/10.1242/jcs.224279
SUMO-modified sites on the nucleoporin component Nup2
2
Foyn et al. (2013) Foyn, H., van Damme, P., Støve, S.I., Glomnes, N., Evjenth, N., Gevaert, K., Arnesen, T. (2013). Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo. Mol Cell Proteomics 12: 42-54.
https://doi.org/10.1074/mcp.M112.019299
Propionylation catalyzed by N-terminal acetyltransferases
4
Frankovsky et al. (2021a) Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162.
https://doi.org/10.1016/j.mito.2020.12.016
Metaanalysis of the yeast phosphoproteome as of January 2021
9174
Frankovsky et al. (2021b) Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155.
https://doi.org/10.1016/j.jbc.2021.101155
Mitochondrial succinylome in cells grown on nonfermentable carbon source
1904
Gao et al. (2020) Gao, J., Kurre, R., Rose, J., Walter, S., Fröhlich, F., Piehler, J., Reggiori, F., Ungermann, C. (2020). Function of the SNARE Ykt6 on autophagosomes requires the Dsl1 complex and the Atg1 kinase complex. EMBO Rep 21: e50733.
https://doi.org/10.15252/embr.202050733
Regulation of Ykt6 activity on autophagosomes via phosphorylation by the Atg1 kinase
3
Gartner et al. (1992) Gartner, A.,  Nasmyth, K.,  Ammerer, G. (1992). Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev 6: 1280-1292.
https://doi.org/10.1101/gad.6.7.1280
Pheromone-induced phoisphorylation of protein kinases Fus2 and Kss1
2
Gey et al. (2014) Gey, U.,  Czupalla, C.,  Hoflack, B.,  Krause, U.,  Rödel, G. (2014). Proteomic analysis reveals a novel function of the kinase Sat4p in Saccharomyces cerevisiae mitochondria. PLoS One 9: e103956.
https://doi.org/10.1371/journal.pone.0103956
The lipoylation status on Lat1p, Kgd2p and Gcv3p is affected by the protein kinase Sat4
3
Ghosh et al. (2021) Ghosh, C., Uppala, J.K., Sathe, L., Hammond, C.I., Anshu, A., Pokkuluri, P.R., Turk, B.E., Dey, M. (2021). Phosphorylation of Pal2 by the protein kinases Kin1 and Kin2 modulates HAC1 mRNA splicing in the unfolded protein response in yeast. Sci Signal 14: eaaz4401.
https://doi.org/10.1126/scisignal.aaz4401
Phosphorylation of endocytic adaptor protein Pal1 by protein kinases Kin1 and Kin2
1
Goldstein et al. (2017) Goldstein, A., Siegler, N., Goldman, D., Judah, H., Valk, E., Kõivomägi, M., Loog, M., Gheber, L. (2017). Three Cdk1 sites in the kinesin-5 Cin8 catalytic domain coordinate motor localization and activity during anaphase. Cell. Mol. Life Sci. 74: 3395-3412.
https://doi.org/10.1007/s00018-017-2523-z
Cdk1-dependent phosphorylation of kinesin-5 Cin8
3
Gonzáles-Rubio et al. (2021) González-Rubio, G., Sellers-Moya, Á., Martín, H., Molina, M. (2021). Differential Role of Threonine and Tyrosine Phosphorylation in the Activation and Activity of the Yeast MAPK Slt2. Int J Mol Sci 22: 1110.
https://doi.org/10.3390/ijms22031110
Dynamics of phosphorylation of the MAP kinase Slt2
2
Griffiths et al. (2009) Griffiths, L.M., Swartzlander, D., Meadows, K.L,, Wilkinson, K.D., Corbett, A.H., Doetsch, P.W. (2009). Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress. Mol Cell Biol 29(3):794-807
https://doi.org/10.1128/MCB.01357-08
SUMO-modified sites on the DNA N-glycosylase Ntg1
1
Grosshans et al. (2006) Grosshans, B.L., Grötsch, H., Mukhopadhyay, D., Fernández, I.M., Pfannstiel, J., Idrissi, F.Z., Lechner, J., Riezman, H., Geli, M.I. (2006). TEDS site phosphorylation of the yeast myosins I is required for ligand-induced but not for constitutive endocytosis of the G protein-coupled receptor Ste2p. J Biol Chem 281: 11104-11114.
https://doi.org/10.1074/jbc.M508933200
Phosphorylation of the myosins Myo3p and Myo5p and its role in endocytosis
1
Gruhler et al. (2005) Gruhler, A.,  Olsen, J.V.,  Mohammed, S.,  Mortensen, P.,  Faergeman, N.J.,  Mann, M.,  Jensen, O.N. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4: 310-327.
https://doi.org/10.1074/mcp.M400219-MCP200
Pheromone-induced changes in phosphoproteome
26
Guo et al. (2017a) Guo X, Niemi NM, Coon JJ, Pagliarini DJ (2017a) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292:11751–11759.
https://doi.org/10.1074/jbc.M117.787341
Phosphoproteome in wild-type cells compared to mutants lacking PTC5, PTC6 and PTC7 encoding mitochondrial protein phosphatases
742
Guo et al. (2017b) Guo X, Niemi NM, Hutchins PD, et al (2017b) Ptc7p dephosphorylates select mitochondrial proteins to enhance metabolic function. Cell Reports 18:307–313.
https://doi.org/10.1016/j.celrep.2016.12.049
Phosphoproteome in wild-type cells compared to mutants lacking PTC7 encoding mitochondrial protein phosphatase Ptc7
178
Hamey et al. (2021) Hamey, J.J., Nguyen, A., Wilkins, M.R. (2021). Discovery of arginine methylation, phosphorylation, and their co-occurrence in condensate-associated proteins in Saccharomyces cerevisiae. J Proteome Res 20: 2420-2434.
https://doi.org/10.1021/acs.jproteome.0c00927
Arginine methylation, phosphorylation, and their co-occurrence in condensate-associated proteins
6
Heidinger-Pauli et al. (2008) Heidinger-Pauli, J.M., Unal, E., Guacci, V., Koshland, D. (2008). The kleisin subunit of cohesin dictates damage-induced cohesion. Mol Cell 31: 47-56.
https://doi.org/10.1016/j.molcel.2008.06.005
Regulation of alpha-kleisin subunit of the cohesin complex Mcd1/Scc1 by phosphorylation and acetylation
3
Henriksen et al. (2012) Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522.
https://doi.org/10.1074/mcp.M112.017251
Acetylome of cells grown on complete synthetic media
1226
Hess et al. (2014) Hess KC, Liu J, Manfredi G, et al (2014) A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. FASEB Journal 28:4369–4380.
https://doi.org/10.1096/fj.14-252890
CO2-adenylyl cyclase dependent regulation of Cox5 subunit
2
Hitchcock et al. (2003) Hitchcock, A.L., Auld, K., Gygi, S.P., Silver, P.A. (2003). A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci U S A 100: 12735-12740.
https://doi.org/10.1073/pnas.2135500100
Induction of ubiquitylationin response to mutations in the endoplasmic reticulum degradation machinery
1
Holt et al. (2009) Holt, L.J.,  Tuch, B.B.,  Villén, J.,  Johnson, A.D.,  Gygi, S.P.,  Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686.
https://doi.org/10.1126/science.1172867
Cdk1-dependent phosphoproteome
1783
Huang et al. (2016) Huang, D., Piening, B.D., Kennedy, J.J., Lin, C., Jones-Weinert, C.W., Yan, P., Paulovich, A.G. (2016). DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae. Genetics 203: 353-368.
https://doi.org/10.1534/genetics.115.185231
Profiles of DNA replication stress phosphoproteome
3
Huber et al. (2009) Huber, A.,  Bodenmiller, B.,  Uotila, A.,  Stahl, M.,  Wanka, S.,  Gerrits, B.,  Aebersold, R.,  Loewith, R. (2009). Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 23: 1929-1943.
https://doi.org/10.1101/gad.532109
Rapamycin-sensitive phosphoproteome
35
Hur et al. (2008) Hur, J.Y.,  Kang, G.Y.,  Choi, M.Y.,  Jung, J.W.,  Kim, K.P.,  Park, S.H. (2008). Quantitative profiling of dual phosphorylation of Fus3 MAP kinase in Saccharomyces cerevisiae. Mol Cells 26: 41-47.
https://www.molcells.org/journal/view.html?year=2008&volume=26&number=1&spage=41
Profiling of the phosphorylation status of TxY motif in protein kinase Fus3
2
Hurst et al. (2021) Hurst, V., Challa, K., Jonas, F., Forey, R., Sack, R., Seebacher, J., Schmid, C.D., Barkai, N., Shimada, K., Gasser, S.M., Poli, J. (2021). A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress. EMBO J 40: e108439
https://doi.org/10.15252/embj.2021108439
Mec1 phosphorylation induced by DNA damage
1
Jakobsson et al. (2015) Jakobsson, M.E., Davydova, E., Małecki, J., Moen, A., Falnes, P.Ø. (2015). Saccharomyces cerevisiae eukaryotic elongation factor 1A (eEF1A) is methylated at Lys-390 by a METTL21-like methyltransferase. PLoS One 10: e0131426.
https://doi.org/10.1371/journal.pone.0131426
Methylated sites on the elongation factor 1A Tef1/Tef2
1
James et al. (1995) James, A.G., Cook, R.M., West, S.M., Lindsay, J.G. (1995). The pyruvate dehydrogenase complex of Saccharomyces cerevisiae is regulated by phosphorylation. FEBS Lett 373: 111-114.
https://doi.org/10.1016/0014-5793(95)01020-F
Phoshorylation of the E1 catalytic subunit (Pda1) of pyruvate dehydrogenase
1
Janschitz et al. (2019) Janschitz, M., Romanov, N., Varnavides, G., Hollenstein, D.M., Gérecová, G., Ammerer, G., Hartl, M., Reiter, W. (2019). Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Commun Signal 17: 66.
https://doi.org/10.1186/s12964-019-0381-z
Hyperosmotic stress-affected phosphoproteome
10
Jastrzebska et al. (2015) Jastrzebska, Z., Kaminska, J., Chelstowska, A., Domanska, A., Rzepnikowska, W., Sitkiewicz, E., Cholbinski, P., Gourlay, C., Plochocka, D., Zoladek, T. (2015). Mimicking the phosphorylation of Rsp5 in PKA site T761 affects its function and cellular localization. Eur J Cell Biol 94: 576-588.
https://doi.org/10.1016/j.ejcb.2015.10.005
Phosphorylation of ubiquitin ligase Rsp5 by cAMP-dependent protein kinase
1
Jin et al. (2016) Jin, X., Starke, S., Li, Y., Sethupathi, S., Kung, G., Dodhiawala, P., Wang, Y. (2016). Nitrogen starvation-induced phosphorylation of Ras1 protein and its potential role in nutrient signaling and stress response. J Biol Chem 291: 16231-16239.
https://doi.org/10.1074/jbc.M115.713206
Nitrogen-starvation induced phosphorylation of Ras1 protein
1
Jin et al. (2017) Jin, N., Jin, Y., Weisman, L.S. (2017). Early protection to stress mediated by CDK-dependent PI3,5P2 signaling from the vacuole/lysosome. J. Cell Biol. 216: 2075-2090.
https://doi.org/10.1083/jcb.201611144
Phosphorylation of the lipid kinase Fab1 by cyclin-dependent protein kinase Pho85
8
Jones et al. (2011) Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440.
https://doi.org/10.4161/cc.10.20.17790
Phosphorylated sites on the components of the core centrosome
31
Kanki et al. (2013) Kanki, T., Kurihara, Y., Jin, X., Goda, T., Ono, Y., Aihara, M., Hirota, Y., Saigusa, T., Aoki, Y., Uchiumi, T., Kang, D. (2013). Casein kinase 2 is essential for mitophagy. EMBO Rep 14: 788-794.
https://doi.org/10.1038/embor.2013.114
Atg32 proptein as a substrate of casein kinase 2
2
Kikuchi et al. (2010) Kikuchi, J., Iwafune, Y., Akiyama, T., Okayama, A., Nakamura, H., Arakawa, N., Kimura, Y., Hirano, H. (2010). Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics 10: 2769-2779.
https://doi.org/10.1002/pmic.200900283
Phosphorylation sites on the proteasome subunits
5
Kolawa et al. (2013) Kolawa, N., Sweredoski, M.J., Graham, R.L., Oania, R., Hess, S., Deshaies, R.J. (2013). Perturbations to the ubiquitin conjugate proteome in yeast δubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics 12: 2791-2803.
https://doi.org/10.1074/mcp.M113.030163
Ubiquitylation status of proteins in cdc48 and ubx mutants
21
Krause-Buchholz et al. (2006) Krause-Buchholz, U., Gey, U., Wünschmann, J., Becker, S., Rödel, G. (2006). YIL042c and YOR090c encode the kinase and phosphatase of the Saccharomyces cerevisiae pyruvate dehydrogenase complex. FEBS Lett. 580: 2553-2560
https://doi.org/10.1016/j.febslet.2006.04.002
Phoshorylation of the E1 catalytic subunit (Pda1) of pyruvate dehydrogenase
1
Kriegel et al. (1994) Kriegel, T.M., Rush, J., Vojtek, A.B., Clifton, D., Fraenkel, D.G. (1994). In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 33: 148-152.
https://doi.org/10.1021/bi00167a019
Phosphosites on hexokinase 2 Hxk2
1
Lanz et al. (2021) Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121.
https://doi.org/10.15252/embr.202051121
In-depth phosphoproteomic dataset from 75 independent SILAC-based experiments exploring a range of conditions, including distinct cell cycle stages, DNA damage treatment, and carbon deprivation
7265
Lee et al. (1993) Lee, K.S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K., Levin, D.E. (2003). A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13: 3067-3075.
https://doi.org/10.1128/mcb.13.5.3067-3075.1993
Phosphosites on MAP kinase Slt2
2
Lee et al. (2019) Lee, S., Ho, H.C., Tumolo, J.M., Hsu, P.C., MacGurn, J.A. (2019). Methionine triggers Ppz-mediated dephosphorylation of Art1 to promote cargo-specific endocytosis. J Cell Biol 218: 977-992.
https://doi.org/10.1083/jcb.201712144
Phosphorylation status of ubiquitin ligase complex is regulated by protein phosphatase Ppz1 and Ppz2
7
Li et al. (2007) Li, X., Gerber, S.A., Rudner, A.D., Beausoleil, S.A., Haas, W., Villén, J., Elias, J.E., Gygi, S.P. (2007). Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J Proteome Res 6: 1190-1197.
https://doi.org/10.1021/pr060559j
Phosphoproteomic analysis of alpha-pheromone arrested cells
1
Link et al. (2020) Link, A.J., Niu, X., Weaver, C.M., Jennings, J.L., Duncan, D.T., McAfee, K.J., Sammons, M., Gerbasi, V.R., Farley, A.R., Fleischer, T.C., Browne, C.M., Samir, P., Galassie, A., Boone, B. (2020). Targeted identification of protein interactions in eukaryotic mRNA translation. Proteomics 20: e1900177.
https://doi.org/10.1002/pmic.201900177
Phosphoproteomics of proteins involved in mRNA translation
5
Lipson et al. (2010) Lipson, R.S., Webb, K.J., Clarke, S.G. (2010). Two novel methyltransferases acting upon eukaryotic elongation factor 1A in Saccharomyces cerevisiae. Arch Biochem Biophys 500: 137-143.
https://doi.org/10.1016/j.abb.2010.05.023
Methylated sites on the elongation factor 1A Tef1/Tef2
2
Liu et al. (2021) Liu, S., Liu, S., He, B., Li, L., Li, L., Wang, J., Cai, T., Chen, S., Jiang, H. (2021). OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential. EMBO Rep 22: e51606.
https://doi.org/10.15252/embr.202051606
Respiratory deficiency results in hyper-phosphorylation of the mitochondrial outer membrane protein Puf3 to promote mitochondrial biogenesis
23
Low et al. (2016) Low, J.K.,  Im, H.,  Erce, M.A.,  Hart-Smith, G.,  Snyder, M.P.,  Wilkins, M.R. (2016). Protein substrates of the arginine methyltransferase Hmt1 identified by proteome arrays. Proteomics 16: 465-476.
https://doi.org/10.1002/pmic.201400564
Putative protein targets of arginine methyltransferase Hmt1
4
Ludin et al. (1998) Ludin, K., Jiang, R., Carlson, M. (1998). Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 95: 6245-6250.
https://doi.org/10.1073/pnas.95.11.6245
Interaction of AMP-activated protein kinase Snf1 with regulatory subunit (Reg1) of protein phosphatase Glc7
1
MacGilvray et al. (2020) MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417.
https://doi.org/10.1021/acs.jproteome.0c00253
Phosphoproteome of cells exposed to dithiothreitol
1425
MacGurn et al. (2011) MacGurn, J.A., Hsu, P.C., Smolka, M.B., Emr, S.D. (2011). TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147: 1104-1117.
https://doi.org/10.1016/j.cell.2011.09.054
TORC1 regulation of endocytosis via Npr1 protein kinase
1
Makovets and Blackburn (2009) Makovets, S., Blackburn, E.H. (2009). DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 11: 1383-1386.
https://doi.org/10.1038/ncb1985
DNA damage induced phosphorylation of the helicase Pif1
2
Malys et al. (2004) Malys, N., Carroll, K., Miyan, J., Tollervey, D., McCarthy, J.E. (2004) The 'scavenger' m7GpppX pyrophosphatase activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Res 32: 3590-3600.
https://doi.org/10.1093/nar/gkh687
Phosphorylation of GpppX pyrophosphatase Dcs1 upon glucose deprivation
1
Marotti et al. (2002) Marotti, L.A., Newitt, R., Wang, Y., Aebersold, R., Dohlman, H.G. (2002). Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41: 5067-5074.
https://doi.org/10.1021/bi015940q
Ubiquitylation of the alpha subunit of G-protein Gpa1
1
Martin-Montalvo et al. (2011) Martín-Montalvo, A., González-Mariscal, I., Padilla, S., Ballesteros, M., Brautigan, D.L., Navas, P., Santos-Ocaña, C. (2011). Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p. Biochem J 440: 107-114.
https://doi.org/10.1042/BJ20101422
Phosphorylation status of Cat5/Coq7 protein under fermentative versus respiratory growth
3
Martin-Yken et al. (2003) Martin-Yken, H., Dagkessamanskaia, A., Basmaji, F., Lagorce, A., Francois, J. (2003). The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Mol Microbiol 49: 23-35.
https://doi.org/10.1046/j.1365-2958.2003.03541.x
Phosphorylation of the MAP kinase Slt2 is regulated by the cell wall protein Smi1/Knr4
2
Mateyak et al. (2021) Mateyak, M.K., He, D., Sharma, P., Kinzy, T.G. (2021). Mutational analysis reveals potential phosphorylation sites in eukaryotic elongation factor 1A that are important for its activity. FEBS Lett 595:2208-2220
https://doi.org/10.1002/1873-3468.14164
Phosphosites on elongation factor 1A
14
Matsuo et al. (2017) Matsuo, Y., Ikeuchi, K., Saeki, Y., Iwasaki, S., Schmidt, C., Udagawa, T., Sato, F., Tsuchiya, H., Becker, T., Tanaka, K., Ingolia, N.T., Beckmann, R., Inada, T. (2017). Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 8: 159.
https://doi.org/10.1038/s41467-017-00188-1
Ubiquitylation induced by stalled ribosome
3
Memisoglu et al. (2019) Memisoglu, G., Lanz, M.C., Eapen, V.V., Jordan, J.M., Lee, K., Smolka, M.B., Haber, J.E. (2019). Mec1(ATR) autophosphorylation and Ddc2(ATRIP) phosphorylation regulates DNA damage checkpoint signaling. Cell Rep 28: 1090-1102.e3
https://doi.org/10.1016/j.celrep.2019.06.068
Mec1 phosphorylation induced by DNA damage
1
Mischerikow et al. (2009) Mischerikow, N., Spedale, G., Altelaar, A.F., Timmers, H.T., Pijnappel, W.W., Heck, A.J. (2009). In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA. J Proteome Res 8: 5020-5030.
https://doi.org/10.1021/pr900449e
Acetylated sites on the subunit of the SAGA transcriptional complex Spt7
13
Mollapour et al. (2011) Mollapour, M., Tsutsumi, S., Kim, Y.S., Trepel, J., Neckers, L. (2011). Casein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity. Oncotarget 2: 407-417.
https://doi.org/10.18632/oncotarget.272
Phosphorylation of Hsc82 by casein kinase 2
2
Nassiri Toosi et al. (2021) Nassiri Toosi, Z., Su, X., Austin, R., Choudhury, S., Li, W., Pang, Y.T., Gumbart, J.C., Torres, M.P. (2020). Combinatorial phosphorylation modulates the structure and function of the G protein γ subunit in yeast. Sci Signal 14: eabd2464.
https://doi.org/10.1126/scisignal.abd2464
Mapping phosphorylated sites on Ste18 protein in cells exposed to glucose, osmotic stress and acid stress
1
Nijland et al. (2021) Nijland, J.G., Shin, H.Y., Dore, E., Rudinatha, D., de Waal, P.P., Driessen, A.J.M. (2021). D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain. FEMS Yeast Res 21: foaa062.
https://doi.org/10.1093/femsyr/foaa062
Identification of phosphosites in hexokinase 2 (Hxk2) during D-xylose/D-glucose co-metabolism
2
Ohlmeier et al. (2010) Ohlmeier S, Hiltunen JK, Bergmann U (2010) Protein phosphorylation in mitochondria - A study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 31:2869–2881.
https://doi.org/10.1002/elps.200900759
Low-throughput phosphoproteome of cells encountering a shift from fermentation to respiration (diauxic shift)
244
Omerza et al. (2018) Omerza, G.,  Tio, C.W.,  Philips, T.,  Diamond, A.,  Neiman, A.M.,  Winter, E. (2018). The meiosis-specific Cdc20 family-member Ama1 promotes binding of the Ssp2 activator to the Smk1 MAP kinase. Mol Biol Cell 29: 66-74.
https://doi.org/10.1091/mbc.E17-07-0473
Phosphorylation of the protein kinase Smk1 in meiotic cells
2
Ononye et al. (2020) Ononye, O.E., Sausen, C.W., Balakrishnan, L., Bochman, M.L. (2020). Lysine acetylation regulates the activity of nuclear Pif1. J Biol Chem 295: 15482-15497.
https://doi.org/10.1074/jbc.RA120.015164
Acetylated sites on the helicase Pif1
6
Paasch et al. (2018) Paasch, F., den Brave, F., Psakhye, I., Pfander, B., Jentsch, S. (2018). Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. J Biol Chem 293: 599-609.
https://doi.org/10.1074/JBC.M117.817833
SUMO-modified sites on mitochondrial proteins extracted from cells grwon on complete synthetic media
79
Papinsky et al. (2014) Papinski, D., Schuschnig, M., Reiter, W., Wilhelm, L., Barnes, C.A., Maiolica, A., Hansmann, I., Pfaffenwimmer, T., Kijanska, M., Stoffel, I., Lee, S.S., Brezovich, A., Lou, J.H., Turk, B.E., Aebersold, R., Ammerer, G., Peter, M., Kraft, C. (2014). Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol Cell 53: 471-483.
https://doi.org/10.1016/j.molcel.2013.12.011
Identification of the substrates of protein kinase Atg1
12
Peng et al. (2003) Peng, J.,  Schwartz, D.,  Elias, J.E.,  Thoreen, C.C.,  Cheng, D.,  Marsischky, G.,  Roelofs, J.,  Finley, D.,  Gygi, S.P. (2003). A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21: 921-926.
https://doi.org/10.1038/nbt849
Whole proteome ubiquitylation analysis
36
Pereira et al. (2018) Pereira, C.,  Pereira, A.T.,  Osório, H.,  Moradas-Ferreira, P.,  Costa, V. (2018). Sit4p-mediated dephosphorylation of Atp2p regulates ATP synthase activity and mitochondrial function. Biochim Biophys Acta 1859: 591-601.
https://doi.org/10.1016/j.bbabio.2018.04.011
Sit4p-dependent phosphorylation of mitochondrial proteins
2
Plank et al. (2015) Plank, M., Fischer, R., Geoghegan, V., Charles, P.D., Konietzny, R., Acuto, O., Pears, C., Schofield, C.J., Kessler, B.M. (2015). Expanding the yeast protein arginine methylome. Proteomics 15: 3232-2143.
https://doi.org/10.1002/pmic.201500032
Methylproteome of cells grown in synthetic complete media
4
Polevoda et al. (2006) Polevoda, B., Span, L., Sherman, F. (2006). The yeast translation release factors Mrf1p and Sup45p (eRF1) are methylated, respectively, by the methyltransferases Mtq1p and Mtq2p. J Biol Chem 281: 2562-2571.
https://doi.org/10.1074/jbc.M507651200
Methylated site on mitochondrial translation release factor Mrf1
1
Poljak et al. (2018) Poljak, K.,  Selevsek, N.,  Ngwa, E.,  Grossmann, J.,  Losfeld, M.E.,  Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30.
https://doi.org/10.1074/mcp.RA117.000096
Glycosylation site occupancy on yeast proteome
23
Pultz et al. (2012) Pultz, D.,  Bennetzen, M.V.,  Rødkær, S.V.,  Zimmermann, C.,  Enserink, J.M.,  Andersen, J.S.,  Færgeman, N.J. (2012). Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8: 796-803.
https://doi.org/10.1039/c2mb05356j
Phosphoproteome response to inhibition of fatty acid synthesis
323
Rahman et al. (2020) Rahman, H., Rudrow, A., Carneglia, J., Joly, S.S.P., Nicotera, D., Naldrett, M., Choy, J., Ambudkar, S.V., Golin, J. (2020). Nonsynonymous mutations in linker-2 of the Pdr5 multidrug transporter identify a new RNA stability element. G3 (Bethesda) 10: 357-369.
https://doi.org/10.1534/g3.119.400863
Phosphosites on a multidrug transporter Pdr5 and their roles in multidrug resistance
19
Regan-Mochrie et al. (2022) Regan-Mochrie, G., Hoggard, T., Bhagwat, N., Lynch, G., Hunter, N., Remus, D., Fox, C.A., Zhao, X. (2022). Yeast ORC sumoylation status fine-tunes origin licensing. Genes Dev 36: 807-821.
https://doi.org/10.1101/gad.349610.122
SUMO-modified sites on the protein Orc2
4
Regot et al. (2013) Regot, S., de Nadal, E., Rodríguez-Navarro, S., González-Novo, A., Pérez-Fernandez, J., Gadal, O., Seisenbacher, G., Ammerer, G., Posas, F. (2013). The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress. J Biol Chem 288: 17384-17398.
https://doi.org/10.1074/jbc.M112.444042
Phosphorylation of nucleoporins by protein kinase Hog1
1
Reinders et al. (2007) Reinders J, Wagner K, Zahedit RP, et al (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Molecular and Cellular Proteomics 6:1896–1906.
https://doi.org/10.1074/mcp.M700098-MCP200
Low-throughput phosphoproteome of purified mitochondria purified from cells grown non-fermentable medium (glycerol)
85
Reiter et al. (2012) Reiter, W., Anrather, D., Dohnal, I., Pichler, P., Veis, J., Grøtli, M., Posas, F., Ammerer, G. (2012). Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins. Proteomics 12:c3030-3043.
https://doi.org/10.1002/pmic.201200185
Osmostress induced phosphorylation of the protein Pan1
1
Rekstina et al. (2019) Rekstina, V.V., Bykova, A.A., Ziganshin, R.H., Kalebina, T.S. (2019). GPI-Modified Proteins Non-covalently Attached to Saccharomyces cerevisiae Yeast Cell Wall. Biochemistry (Mosc) 84: 1513-1520
https://doi.org/10.1134/S0006297919120101
Phosphorylation of GPI-modified proteins in the delipidized cell wall fraction (wild-type versus bgl2Δ strains
6
Rekstina et al. (2020) Rekstina, V.V., Sabirzyanova, T.A., Sabirzyanov, F.A., Adzhubei,, A.A., Tkachev, Y.V., Kudryashova, I.B., Snalina, N.E., Bykova, A.A., Alessenko, A.V., Ziganshin, R.H., Kuznetsov, S.A., Kalebina, T.S. (2020). The post-translational modifications, localization, and mode of attachment of non-covalently bound glucanosyltransglycosylases of yeast cell wall as a key to understanding their functioning. Int J Mol Sci 21: 8304.
https://doi.org/10.3390/ijms21218304
Glutathionylation of glucanosyltransglycosylases
1
Ren et al. (2008) Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., Yao, X. (2008). CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21: 639-644.
https://doi.org/10.1093/protein/gzn039
A software-predicted palmitoylated sites on yeast proteins
13
Renvoise et al. (2014) Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150.
https://doi.org/10.1016/j.jprot.2014.04.022
Low-throughput mitochondrial phosphoproteome of cells grown under fermentative versus respiratory growth conditions
848
Rimal et al. (2020) Rimal, A.,  Kamdar, Z.P.,  Tio, C.W.,  Winter, E. (2020). Isc10, an inhibitor that links the anaphase-promoting complex to a meiosis-specific mitogen-activated protein kinase. Mol Cell Biol 40: e00097-20.
https://doi.org/10.1128/MCB.00097-20
Phosphorylation of the protein kinase Smk1 in meiotic cells
2
Robbins et al. (2012) Robbins, N., Leach, M.D., Cowen, L.E. (2012). Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep 2: 878-888.
https://doi.org/10.1016/j.celrep.2012.08.035
Acetylated sites on the chaperone Hsc82
2
Rocha et al. (2018) Rocha AG, Knight SAB, Pandey A, et al (2018) Cysteine desulfurase is regulated by phosphorylation of Nfs1 in yeast mitochondria. Mitochondrion 40:29–41.
https://doi.org/10.1016/j.mito.2017.09.003
Identification of cysteine desulfurase Nfs1 as a substrate for the protein kinase Yck2
3
Rødkær et al. (2014) Rødkær, S.V.,  Pultz, D.,  Brusch, M.,  Bennetzen, M.V.,  Falkenby, L.G.,  Andersen, J.S.,  Færgeman, N.J. (2014). Quantitative proteomics identifies unanticipated regulators of nitrogen- and glucose starvation. Mol Biosyst 10: 2176-2188.
https://doi.org/10.1039/c4mb00207e
Phosphoproteome response to glucose and nitrogen starvation
214
Roelants et al. (2018) Roelants, F.M., Chauhan, N., Muir, A., Davis, J.C., Menon, A.K., Levine, T.P., Thorner, J. (2018). TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Mol Biol Cell 29: 2128-2136.
https://doi.org/10.1091/mbc.E18-04-0229
Ysp2 and Lam4/Ltc3 as substrates of protein kinase Ypk1
4
Romanov et al. (2017) Romanov, N., Hollenstein, D.M., Janschitz, M., Ammerer, G., Anrather, D., Reiter, W. (2017). Identifying protein kinase-specific effectors of the osmostress response in yeast. Sci Signal 10: eaag2435.
https://doi.org/10.1126/scisignal.aag2435
Impact of Hog1 activation or inhibition on the phosphoproteome
1
Rubenstein et al. (2008) Rubenstein, E.M., McCartney, R.R., Zhang, C., Shokat, K.M., Shirra, M.K., Arndt, K.M., Schmidt, M.C. (2008). Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem 283: 222-230.
https://doi.org/10.1074/jbc.M707957200
Regulation of AMP-activated protein kinase Snf1 by protein phosphatase Glc7-Reg1
1
Rucktäschel et al. (2009) Rucktäschel, R., Thoms, S., Sidorovitch, V., Halbach, A., Pechlivanis, M., Volkmer, R., Alexandrov, K., Kuhlmann, J., Rottensteiner, H., Erdmann, R. (2009). Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J Biol Chem 284: 20885-20896.
https://doi.org/10.1074/jbc.M109.016584
Farnesylated sites on the protein Pex19
1
Schmidt et al. (2011) Schmidt O, Harbauer AB, Rao S, et al (2011) Regulation of mitochondrial protein import by cytosolic kinases. Cell 144:227–239.
https://doi.org/10.1016/j.cell.2010.12.015
The translocase of the outer membrane (TOM complex) is shown to be phosphorylated by casein kinase 2 and protein kinase A
36
Schmitt et al. (2017) Schmitt, K.,  Smolinski, N.,  Neumann, P.,  Schmaul, S.,  Hofer-Pretz, V.,  Braus, G.H.,  Valerius, O. (2017). Asc1p/RACK1 connects ribosomes to eukaryotic phosphosignaling. Mol Cell Biol 37: e00279-16.
https://doi.org/10.1128/MCB.00279-16
Asc1p-dependent phosphorylation of S. cerevisiae proteins
34
Schummer et al. (2020) Schummer, A., Maier, R., Gabay-Maskit, S., Hansen, T., Mühlhäuser, W.W.D., Suppanz, I., Fadel, A., Schuldiner, M., Girzalsky, W., Oeljeklaus, S., Zalckvar, E., Erdmann, R., Warscheid, B. (2020). Pex14p Phosphorylation Modulates Import of Citrate Synthase 2 Into Peroxisomes in Saccharomyces cerevisiae. Front Cell Dev Biol 8: 549451.
https://doi.org/10.3389/fcell.2020.549451
Phosphosites on the peroxisomal biogenesis factor Pex14
13
Schuster et al. (2020) Schuster, R., Anton, V., Simões, T., Altin, S., den Brave, F., Hermanns, T., Hospenthal, M., Komander, D., Dittmar, G., Dohmen, R.J., Escobar-Henriques, M. (2020). Dual role of a GTPase conformational switch for membrane fusion by mitofusin ubiquitylation. Life Sci Alliance 3: e201900476.
https://doi.org/10.26508/lsa.201900476
Ubiquitylation of the mitofusin Fzo1
1
Scopino et al. (2021) Scopino, K., Dalgarno, C., Nachmanoff, C., Krizanc, D., Thayer, K.M., Weir, M.P. (2021). Arginine methylation regulates ribosome CAR function. Int J Mol Sci 22: 1335.
https://doi.org/10.3390/ijms22031335
Methylated site on the ribosomal protein Rps3
1
Sen et al. (2020) Sen, A., Hsieh, W.C., Hanna, C.B., Hsu, C.C., Pearson, M., Tao, W.A., Aguilar, R.C. (2020). The Na+ pump Ena1 is a yeast epsin-specific cargo requiring its ubiquitylation and phosphorylation sites for internalization. J Cell Sci 133: jcs245415.
https://doi.org/10.1242/jcs.245415
Ubiquitylation and phosphorylation sites on Na+ pump Ena1
3
Separovich et al. (2020) Separovich, R.J., Wong, M.W.M., Chapman, T.R., Slavich, E., Hamey, J.J., Wilkins, M.R. (2020). Post-translational modification analysis of Saccharomyces cerevisiae histone methylation enzymes reveals phosphorylation sites of regulatory potential. J Biol Chem 296: 100192.
https://doi.org/10.1074/jbc.RA120.015995
Acetylated site on the histone demethylase and transcription factor Gis1
1
Seyfried et al. (2008) Seyfried, N.T., Xu, P., Duong, D.M., Cheng, D., Hanfelt, J., Peng, J. (2008). Systematic approach for validating the ubiquitinated proteome. Anal Chem 80: 4161-4169.
https://doi.org/10.1021/ac702516a
Method of validation of ubiquitylation by reconstructing virtual Western blots for proteins analyzed by gel electrophoresis and mass spectrometry
3
Sharifian et al. (2015) Sharifian, H., Lampert, F., Stojanovski, K., Regot, S., Vaga, S., Buser, R., Lee, S.S., Koeppl, H., Posas, F., Pelet, S., Peter, M. (2015). arallel feedback loops control the basal activity of the HOG MAPK signaling cascade. Integr Biol (Camb) 7: 412-422.
https://doi.org/10.1039/c4ib00299g
Substrates of protein kinase Hog1 phosphorylated under osmitoc stress (0.4 M NaCl)
2
Shkedy et al. (2015) Shkedy, D., Singh, N., Shemesh, K., Amir, A., Geiger, T., Liefshitz, B., Harari, Y., Kupiec, M. (2015). Regulation of Elg1 activity by phosphorylation. Cell Cycle 14: 3689-3697.
https://doi.org/10.1080/15384101.2015.1068475
Identification of phosphosites on the Elg1 protein
1
Siergiejuk et al. (2009) Siergiejuk, E., Scott, D.C., Schulman, B.A., Hofmann, K., Kurz, T., Peter, M. (2009). Cullin neddylation and substrate-adaptors counteract SCF inhibition by the CAND1-like protein Lag2 in Saccharomyces cerevisiae. EMBO J 28: 3845-3856.
https://doi.org/10.1038/emboj.2009.354
Neddylated site on the protein Lag2
1
Smaczynska-de Rooij II et al. (2015) Smaczynska-de Rooij, I.I., Marklew, C.J., Allwood, E.G., Palmer, S.E., Booth, W.I., Mishra, R., Goldberg, M.W., Ayscough, K.R. (2015). Phosphorylation regulates the endocytic function of the yeast dynamin-related protein Vps1. Mol Cell Biol 36: 742-755.
https://doi.org/10.1128/MCB.00833-15
Vps1 is phosphorylated by protein kinase Pho85 on serine 599
5
Smolka et al. (2007) Smolka, M.B., Albuquerque, C.P., Chen, S.H., Zhou, H. (2007). Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 104: 10364-10369.
https://doi.org/10.1073/pnas.0701622104
Control of phosphoproteome by DNA-damage checkpoint
35
Smotrys et al. (2005) Smotrys, J.E., Schoenfish, M.J., Stutz, M.A., Linder, M.E. (2005). The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. J Cell Biol 170: 1091-1099.
https://doi.org/10.1083/jcb.200507048
Palmitoylated sites on the vacuolar protein Vac8
3
Somesh et al. (2007) Somesh, B.P., Sigurdsson, S., Saeki, H., Erdjument-Bromage, H., Tempst, P., Svejstrup, J.Q. (2007). Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129: 57-68.
https://doi.org/10.1016/j.cell.2007.01.046
Effect of ubiquitylation on the activity of RNA pomymerase II
2
Song and Dohlman (1996) Song, J., Dohlman, H.G. (1996). Partial constitutive activation of pheromone responses by a palmitoylation-site mutant of a G protein alpha subunit in yeast. Biochemistry 35: 14806-11487.
https://doi.org/10.1021/bi961846b
Palmitoylated sites on the alpha subunit of G protein Gpa1
1
Šoštarić et al. (2018) Šoštarić, N., O'Reilly, F.J., Giansanti, P., Heck, A.J.R., Gavin, A.C., van Noort, V. (2018). Effects of acetylation and phosphorylation on subunit interactions in three large eukaryotic complexes. Mol Cell Proteomics 17: 2387-2401.
https://doi.org/10.1074/mcp.RA118.000892
Phosphorylated and acetylated sites on the components of exosome, RNA polymerase II and proteasome
44
Soulard et al. (2010) Soulard, A.,  Cremonesi, A.,  Moes, S.,  Schütz, F.,  Jenö, P.,  Hall, M.N. (2010). The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Molecular Biology of the Cell 21(19): 3475-3486.
https://doi.org/10.1091/mbc.E10-03-0182
Rapamycin-sensitive phosphoproteome
468
Stone et al. (1991) Stone, D.E., Cole, G.M., de Barros, Lopes, M., Goebl, M., Reed, S.I. (1991). N-myristoylation is required for function of the pheromone-responsive G alpha protein of yeast: conditional activation of the pheromone response by a temperature-sensitive N-myristoyl transferase. Genes Dev 5: 1969-1981.
https://doi.org/10.1101/gad.5.11.1969
Myristoylated sites on the alpha subunit of G protein Gpa1
1
Studer et al. (2016) Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232.
https://doi.org/10.1126/science.aaf2144
Comparison of phosphoproteomes of 18 fungal species and a phylogenetic-based approach to study phosphosite evolution indicating that a only small fraction of phosphosites conserved
894
Su et al. (2018) Su, W.M., Han, G.S., Dey, P., Carman, G.M. (2018). Protein kinase A phosphorylates the Nem1-Spo7 protein phosphatase complex that regulates the phosphorylation state of the phosphatidate phosphatase Pah1 in yeast. J Biol Chem 293: 15801-15814.
https://doi.org/10.1074/jbc.RA118.005348
Protein kinase A - dependent phosphorylation of the Nem1–Spo7 complex
2
Swaney et al. (2013) Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682.
https://doi.org/10.1038/nmeth.2519
Yeast proteins co-modified by phosphorylation and uniquitylation
3933
Swartzlander et al. (2016) Swartzlander, D.B.,  McPherson, A.J.,  Powers, H.R.,  Limpose, K.L.,  Kuiper, E.G.,  Degtyareva, N.P.,  Corbett, A.H., Doetsch, P.W. (2016). Identification of SUMO modification sites in the base excision repair protein, Ntg1. DNA Repair (Amst) 48: 51-62.
https://doi.org/10.1016/j.dnarep.2016.10.011
SUMO-modified sites on the DNA N-glycosylase Ntg1
5
Tomioka et al. (2018) Tomioka, M., Shimobayashi, M., Kitabatake, M., Ohno, M., Kozutsumi, Y., Oka, S., Takematsu, H. (2018). Ribosomal protein uS7/Rps5 serine-223 in protein kinase-mediated phosphorylation and ribosomal small subunit maturation. Sci Rep 8: 1244.
https://doi.org/10.1038/s41598-018-19652-z
Phosphorylation of Rps5 by protein kinases Ypk1 and Pkc1
1
Touati et al. (2019) Touati, S.A., Hofbauer, L., Jones, A.W., Snijders, A.P., Kelly, G., Uhlmann, F. (2019). Cdc14 and PP2A phosphatases cooperate to shape phosphoproteome dynamics during mitotic exit. Cell Rep 29: 2105-2119.
https://doi.org/10.1016/j.celrep.2019.10.041
Time-resolved phosphoproteome during mitotic exit, evaluation of the roles of the phosphatases Cdc14, Cdc55 and Rts1
1
Truman et al. (2009) Truman, A.W., Kim, K.Y., Levin, D.E. (2009). Mechanism of Mpk1 mitogen-activated protein kinase binding to the Swi4 transcription factor and its regulation by a novel caffeine-induced phosphorylation. Mol Cell Biol 29: 6449-6461.
https://doi.org/10.1128/MCB.00794-09
Caffeine and DNA damage induced phosphorylation of MAP kinase Slt2
2
Tsang et al. (2014) Tsang, C.K., Liu, Y., Thomas, J., Zhang, Y., Zheng, X.F. (2014). Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun 5: 3446.
https://doi.org/10.1038/ncomms4446
Protein kinase Dun1 phosphorylates superoxide dismutase Sod1
2
Uhlinger et al. (1986) Uhlinger, D.J., Yang, C.Y., Reed, L.J. (1986). Phosphorylation-dephosphorylation of pyruvate dehydrogenase from bakers’ yeast. Biochemistry 25: 5673-5677.
https://doi.org/10.1021/bi00367a049
Phoshorylation of the E1 catalytic subunit (Pda1) of pyruvate dehydrogenase
1
Ullah et al. (2016) Ullah S, Lin S, Xu Y, et al (2016) dbPAF: an integrative database of protein phosphorylation in animals and fungi. Scientific Reports 6:23534.
https://doi.org/10.1038/srep23534
Meta-analysis of known phosphorylation sites in H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe and S. cerevisiae.
Ulman et al. (2021) Ulman, A., Levin. T., Dassa, B., Javitt, A., Kacen, A., Shmueli, M.D., Eisenberg-Lerner, A., Sheban, D., Fishllevich, S., Levy, E.D., Merbl Y (2021). Altered protein abundance and localization inferred from aites of alternative modification by ubiquitin and SUMO. J Mol Biol 433: 167219.
https://doi.org/10.1016/j.jmb.2021.167219
Effect of ubiquitylation on the abundance of the protein Cpr1
2
Vallejo et al. (2020) Vallejo, B., Matallana, E., Aranda, A. (2020). Saccharomyces cerevisiae nutrient signaling pathways show an unexpected early activation pattern during winemaking. Microb Cell Fact 19: 124.
https://doi.org/10.1186/s12934-020-01381-6
Phosphorylation status of AMP-activated protein kinase Snf1 during must fermentation
1
Varlakhanova et al. (2018) Varlakhanova, N.V., Tornabene, B.A., Ford, M.G.J. (2018). Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32. Mol. Biol. Cell 29: 2751-2765.
https://doi.org/10.1091/mbc.E18-03-0158
Npr1-mediated phosphorylation of Par32 induced by exposure to rapamycin
4
Vlastaridis et al. (2017) Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11.
https://doi.org/10.1093/gigascience/giw015
Compilation of 187 HTP phosphoproteomic datasets avaliable at the time of the publication (2017)
2773
Wang and Prelich (2009) Wang, Z., Prelich, G. (2009). Quality control of a transcriptional regulator by SUMO-targeted degradation. Mol Cell Biol 29: 1694-1706.
https://doi.org/10.1128/MCB.01470-08
SUMO-modified sites on the Mot1 protein
6
Wang et al. (2015) Wang, K., Zhou, Y.J., Liu, H., Cheng, K., Mao, J., Wang, F., Liu, W., Ye, M., Zhao, Z.K., Zou, H. (2015). Proteomic analysis of protein methylation in the yeast Saccharomyces cerevisiae. J Proteomics 114: 226-233.
https://doi.org/10.1016/j.jprot.2014.07.032
Methylproteome of cell grown in complete synthetic media
18
Wang et al. (2020) Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126.
https://doi.org/10.1016/j.jmb.2020.09.021
Succinylation, ubiquitination, phosphorylation and deamidation of fumarase Fum1 affected by respiration and DNA damage response
15
Wang et al. (2022) Wang, D., Yan, F., Wu, P., Ge, K., Li, M., Li, T., Gao, Y., Peng, C., Chen, Y. (2022). Global profiling of regulatory elements in the histone benzoylation pathway. Nature Communications 13(1):1369
https://doi.org/10.1038/s41467-022-29057-2
Benzoylated sites on proteins extracted from YPD-grown cells
72
Weinert et al. (2013) Weinert, B.T., Schölz, C., Wagner, S.A., et al. (2013). Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Reports, 4(4), 842-851.
https://doi.org/10.1016/j.celrep.2013.07.024
Succinylome of cells grown on glucose or galactose and in cells with lower (kgd1D) and higher (lsc1D) concentration of succinyl-CoA
629
Whistler and Rine (1997) Whistler, J.L., Rine, J. (1997). Ras2 and Ras1 protein phosphorylation in Saccharomyces cerevisiae. J Biol Chem 272: 18790-18800.
https://doi.org/10.1074/jbc.272.30.18790
Phosphorylation of Ras1 and Ras2 proteins
1
Wu et al. (2011) Wu, R., Haas, W., Dephoure, N., Huttlin, E.L., Zhai, B., Sowa, M.E., Gygi, S.P. (2011). A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8: 677-683.
https://doi.org/10.1038/nmeth.1636
Phosphoproteome of cells growing through mid-log phase
3
Wu et al. (2020) Wu, P.S., Enervald, E., Joelsson, A., Palmberg, C., Rutishauser, D., Hällberg, B.M., Ström, L. (2020). Post-translational Regulation of DNA Polymerase eta, a Connection to Damage-Induced Cohesion in Saccharomyces cerevisiae. Genetics 216: 1009-1022.
https://doi.org/10.1534/genetics.120.303494
Phosphorylation and acetylation of the translesion synthesis polymerase, polymerase η Rad30
21
Xiaojia and Jian (2010) Xiaojia, B., Jian, D. (2010). Serine214 of Ras2p plays a role in the feedback regulation of the Ras-cAMP pathway in the yeast Saccharomyces cerevisiae. FEBS Lett 584: 2333-2338.
https://doi.org/10.1016/j.febslet.2010.04.011
Glucose induced phosphorylation of Ras2
1
Yagoub et al. (2015) Yagoub, D., Hart-Smith, G., Moecking, J., Erce, M.A., Wilkins, M.R. (2015). Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p. Proteomics 15: 3209-3218.
https://doi.org/10.1002/pmic.201500075
Substrates of the arginine methyltransferase Hmt1p
4
Yang et al. (2020) Yang, F., Zhang, X., Lu, Y., Wang, B., Chen, X., Sun, Z., Li, X. (2020). Inulin catabolism in Saccharomyces cerevisiae is affected by some key glycosylation sequons of invertase Suc2. Biotechnol Lett 42: 471-479.
https://doi.org/10.1007/s10529-020-02791-7
Glycosylation sites on yeast invertase Suc2
13
Ye et al. (2016) Ye, Y., Kirkham-McCarthy, L., Lahue, R.S. (2016). The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination. DNA Repair (Amst) 43: 1-8.
https://doi.org/10.1016/j.dnarep.2016.04.012
Acetylated sites on Rad50 protein
6
Yeo et al. (2016) Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113.
https://doi.org/10.1016/j.ab.2016.06.009
Site-specific N-glycosylation occupancy in cell wall glycoproteins from cells with defects in the glycosylation biosynthetic machinery
21
Yip et al. (2021) Yip, J., Wang, S., Tan, J., Lim, T.K., Lin, Q., Yu, Z., Karmon, O., Pines, O., Lehming, N. (2021). Fumarase affects the deoxyribonucleic acid damage response by protecting the mitochondrial desulfurase Nfs1p from modification and inactivation. iScience 24: 103354.
https://doi.org/10.1016/j.isci.2021.103354
PTMs of cysteine desulfurase Nfs1 in response to DNA damage
7
Yu et al. (2021) Yu, Y., Li, S., Ser, Z., Sanyal, T., Choi, K., Wan, B., Kuang, H., Sali, A., Kentsis, A., Patel, D.J., Zhao, X. (2021). Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc Natl Acad Sci U S A 118: e2026844118.
https://doi.org/10.1073/pnas.2026844118
SUMO-modified sites on the Smc6 protein
2
Zatorska et al. (2017) Zatorska, E.,  Gal, L.,  Schmitt, J.,  Bausewein, D.,  Schuldiner, M.,  Strahl, S. (2017). Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 18: 1226.
https://doi.org/10.3390/ijms18061226
Effect of inhibition of O-mannosylation on glycosylation of proteome
5
Zhang et al. (2016) Zhang, Y., Pan, Y., Liu, W., Zhou, Y.J., Wang, K., Wang,, L., Sohail, M., Ye, M., Zou, H., Zhao, Z.K. (2016). In vivo protein allylation to capture protein methylation candidates. Chem Commun (Camb) 52: 6689-6692.
https://doi.org/10.1039/c6cc02386j
Methylproteome of cells grown in synthetic complete media
7
Zhou et al. (2021) Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645.
https://doi.org/10.7554/eLife.63645
Phosphoproteome of cells exiting mitosis
3841
Zhu et al. (2011) Zhu, M., Torres, M.P., Kelley, J.B., Dohlman, H.G., Wang, Y. (2011). Pheromone- and RSP5-dependent ubiquitination of the G protein beta subunit Ste4 in yeast. J Biol Chem 286: 27147-27155.
https://doi.org/10.1074/jbc.M111.254193
Ubiquitylation of the beta subunit of G-protein Ste5
1
Ziegler et al. (1988) Ziegler, F.D., Maley, F., Trimble, R.B. (1988). Characterization of the glycosylation sites in yeast external invertase. II. Location of the endo-beta-N-acetylglucosaminidase H-resistant sequons. J Biol Chem 263: 6986-6992.
https://doi.org/10.1016/S0021-9258(18)68593-X
Glycosylation sites on yeast invertase Suc2
13
Zielinska et al. (2012) Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548.
https://doi.org/10.1016/j.molcel.2012.04.031
Comparative analysis of glycosylation in seven eukaryotic species
142
Ziv et al. (2011) Ziv, I., Matiuhin, Y., Kirkpatrick, D.S., Erpapazoglou, Z., Leon, S., Pantazopoulou, M., Kim, W., Gygi, S.P., Haguenauer-Tsapis, R., Reis, N., Glickman, M.H., Kleifeld, O. (2011). A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol Cell Proteomics 10: M111.009753.
https://doi.org/10.1074/mcp.M111.009753
The profile of conjugated cellular ubiquitin directly from whole cell extract
2
Reference mt proteome
Sickmann et al (2003) Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H.E., Schonfisch, B., Perschill, I., Chacinska, A., Guiard, B., Rehking, P., Pfanner, N., Meisinger, C. (2003). The proteome of Saccharomyces cerevisiae mitochondria. Proceedings of the National Academy of Sciences USA 100: 13207-13212.
https://doi.org/10.1073/pnas.2135385100
Yeast mitochondrial proteome I
Reinders et al. (2006) Reinders, J., Zahedi, R.P., Pfanner, N., Meisinger, C., Sickmann, A. (2006). Toward the complete yeast mitochondrial proteome:  Multidimensional separation techniques for mitochondrial proteomics. Journal of Proteome Research 5: 1543-1554.
https://doi.org/10.1021/pr050477f
Yeast mitochondrial proteome II
Morgenstern et al. (2017) Morgenstern M, Stiller SB, Lübbert P, et al (2017) Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Reports 19:2836–2852.
https://doi.org/10.1016/j.celrep.2017.06.014
Yeast mitochondrial proteome III
Vögtle et al. (2017) Vögtle FN, Burkhart JM, Gonczarowska-Jorge H, et al (2017) Landscape of submitochondrial protein distribution. Nature Communications 8:1–10.
https://doi.org/10.1038/s41467-017-00359-0
Yeast mitochondrial proteome IV
Bartolomeo et al. (2020) Di Bartolomeo F, Malina C, Campbell K, et al (2020) Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift. Proceedings of the National Academy of Sciences USA 117:7524–7535.
https://doi.org/10.1073/pnas.1918216117
Yeast mitochondrial proteome V [during diauxic shif]
Schulte et al. (2023) Schulte U, den Brave F, Haupt A, Gupta A, Song J, Müller CS, Engelke J, Mishra S, Mårtensson C, Ellenrieder L, Priesnitz C, Straub SP, Doan KN, Kulawiak B, Bildl W, Rampelt H, Wiedemann N, Pfanner N, Fakler B, Becker T. (2023) Mitochondrial complexome reveals quality-control pathways of protein import. Nature 614:153-159.
https://doi.org/10.1038/s41586-022-05641-w
Yeast mitochondrial proteome VI [the organization of mitochondrial proteins into complexes]
Mt-nucleoid
Miyakawa (2017) Miyakawa I (2017) Organization and dynamics of yeast mitochondrial nucleoids. Proceedings of the Japan Academy, Series B 93:339–359.
https://doi.org/10.2183/pjab.93.021
The most recent comprehensive review on the organization yeast mitochondrial nucleoids
Chen and Butow (2005) Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nature Reviews Genetics 6:815-825.
https://doi.org/10.1038/nrg1708
A review on organization of mitochondrial genome in yeasts
Göke et al. (2020) Göke A, Schrott S, Mizrak A, Belyy V, Osman C, Walter P. (2020). Mrx6 regulates mitochondrial DNA copy number in Saccharomyces cerevisiae by engaging the evolutionarily conserved Lon protease Pim1. Molecular Biology of the Cell 31:527–545.
https://doi.org/10.1091/mbc.E19-08-0470
Identification of Mrx6 as a novel component of mitochondrial nucleoid